363cb21af01cd3c86067882b98eb08e6f4a33a75,plot_adhd_covariance2.py,,,#,81
Before Change
return_costs=True)
gsc.fit(tasks)
pl.figure()
pl.plot(gsc.objective_)
pl.grid()
// Check that duality gap is higher than estimated error.
After Change
msdl_atlas["maps"], resampling_target="maps",
low_pass=None, high_pass=0.01, t_r=2.5, standardize=True,
memory=mem, memory_level=1, verbose=1)
region_ts = masker.fit_transform(filename,
confounds=[hv_confounds, confound_file])
subjects.append(region_ts)
print("-- Computing precision matrices ...")
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 4
Instances
Project Name: nilearn/nilearn
Commit Name: 363cb21af01cd3c86067882b98eb08e6f4a33a75
Time: 2013-08-29
Author: philippe.gervais@inria.fr
File Name: plot_adhd_covariance2.py
Class Name:
Method Name:
Project Name: nilearn/nilearn
Commit Name: 1039a5cd211fcd785a6a2901b0310660b18b7d93
Time: 2016-06-09
Author: abraham.alexandre@gmail.com
File Name: examples/connectivity/plot_power_connectome.py
Class Name:
Method Name:
Project Name: nilearn/nilearn
Commit Name: b851452bfc933f78ee1c4e42188744a8c5f14c52
Time: 2015-12-03
Author: dkamalakarreddy@gmail.com
File Name: examples/connectivity/plot_extract_regions_canica_maps.py
Class Name:
Method Name: