7098738c9f3c41120cffcce7a76fa7e8e86df4ec,autosklearn/automl.py,AutoML,_fit,#AutoML#Any#,340

Before Change


            self._queue.put([time_for_load_data, data_manager_path, proc_smac,
                             proc_ensembles])
        else:
            proc_smac.wait()
            proc_ensembles.wait()

        // Delete AutoSklearn environment variable
        del_auto_seed()

After Change


                                             "partial-cv"]:
            raise ValueError("Illegal resampling strategy: %s" %
                             self._resampling_strategy)
        if self._resampling_strategy == "partial-cv" and \
                self._ensemble_size != 0:
            raise ValueError("Resampling strategy partial-cv cannot be used "
                             "together with ensembles.")

        self._backend._make_internals_directory()
        if self._keep_models:
            os.mkdir(self._backend.get_model_dir())

        self._metric = datamanager.info["metric"]
        self._task = datamanager.info["task"]
        self._label_num = datamanager.info["label_num"]

        set_auto_seed(self._seed)

        // load data
        self._save_ensemble_data(
            datamanager.data["X_train"],
            datamanager.data["Y_train"])

        time_for_load_data = self._stopwatch.wall_elapsed(self._dataset_name)

        if self._debug_mode:
            self._print_load_time(
                self._dataset_name,
                self._time_for_task,
                time_for_load_data,
                self._logger)

        // == Perform dummy predictions
        self._do_dummy_prediction(datamanager)

        // == Calculate metafeatures
        meta_features = _calculate_metafeatures(
            data_feat_type=datamanager.feat_type,
            data_info_task=datamanager.info["task"],
            x_train=datamanager.data["X_train"],
            y_train=datamanager.data["Y_train"],
            basename=self._dataset_name,
            watcher=self._stopwatch,
            metalearning_cnt=self._initial_configurations_via_metalearning,
            logger=self._logger)

        self._stopwatch.start_task("OneHot")
        datamanager.perform1HotEncoding()
        self._ohe = datamanager.encoder
        self._stopwatch.stop_task("OneHot")

        // == Pickle the data manager
        data_manager_path = self._backend.save_datamanager(datamanager)

        // = Create a searchspace
        self.configuration_space, configspace_path = _create_search_space(
            self._tmp_dir,
            datamanager.info,
            self._backend,
            self._stopwatch,
            self._logger,
            self._include_estimators,
            self._include_preprocessors)
        self.configuration_space_created_hook(datamanager)

        if meta_features is None:
            initial_configurations = []
        elif datamanager.info["task"] in [MULTICLASS_CLASSIFICATION,
                                     BINARY_CLASSIFICATION]:

            meta_features_encoded = _calculate_metafeatures_encoded(
                self._dataset_name,
                datamanager.data["X_train"],
                datamanager.data["Y_train"],
                self._stopwatch,
                self._logger)

            self._logger.debug(meta_features.__repr__(verbosity=2))
            self._logger.debug(meta_features_encoded.__repr__(verbosity=2))

            initial_configurations = _get_initial_configuration(
                meta_features,
                meta_features_encoded,
                self._dataset_name,
                self._metric,
                self.configuration_space,
                self._task,
                self._metadata_directory,
                self._initial_configurations_via_metalearning,
                datamanager.info[
                    "is_sparse"],
                self._stopwatch,
                self._logger)

            _print_debug_info_of_init_configuration(
                initial_configurations,
                self._dataset_name,
                self._time_for_task,
                self._logger,
                self._stopwatch)

        else:
            initial_configurations = []
            self._logger("Metafeatures encoded not calculated")

        // == RUN SMAC
        proc_smac = run_smac(self._tmp_dir, self._dataset_name,
                             self._time_for_task, self._ml_memory_limit,
                             data_manager_path, configspace_path,
                             initial_configurations, self._per_run_time_limit,
                             self._stopwatch, self._backend, self._seed,
                             self._resampling_strategy,
                             self._resampling_strategy_arguments)

        // == RUN ensemble builder
        proc_ensembles = _run_ensemble_builder(
            self._tmp_dir,
            self._output_dir,
            self._dataset_name,
            self._time_for_task,
            self._task,
            self._metric,
            self._ensemble_size,
            self._ensemble_nbest,
            self._stopwatch,
            self._logger
        )

        procs = [proc_smac]
        if proc_ensembles is not None:
            procs.append(proc_ensembles)

        if self._queue is not None:
            self._queue.put([time_for_load_data, data_manager_path, procs])
        else:
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 3

Instances


Project Name: automl/auto-sklearn
Commit Name: 7098738c9f3c41120cffcce7a76fa7e8e86df4ec
Time: 2015-10-02
Author: feurerm@informatik.uni-freiburg.de
File Name: autosklearn/automl.py
Class Name: AutoML
Method Name: _fit


Project Name: ilastik/ilastik
Commit Name: 6fe60e43efbac200052a76b0a849c4c7cd4654a5
Time: 2018-04-25
Author: jonas.massa@iwr.uni-heidelberg.de
File Name: ilastik/applets/networkClassification/nnClassGui.py
Class Name: NNClassGui
Method Name: pred_nn


Project Name: ilastik/ilastik
Commit Name: ad6d3b2e0a43d45a5a00eb372e9063ac12d9dab1
Time: 2017-03-28
Author: bergs@janelia.hhmi.org
File Name: tests/testOpLazyConnectedComponents.py
Class Name:
Method Name: