cec704bd54458bb5b86ca7db4061a5c597fac85e,python/tf_cnn_benchmarks/variable_mgr.py,VariableMgrIndependent,get_gradients_to_apply,#VariableMgrIndependent#Any#Any#,224
Before Change
device_grads = gradient_state
// Note that each grad_and_vars looks like the following:
// ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN))
return [grad_and_vars[device_num] for grad_and_vars in zip(*device_grads)]
def get_devices(self):
return self.benchmark_cnn.raw_devices
After Change
// Since we don"t aggregate variables in --independent mode, we cannot tell
// if there are NaNs on all GPUs. So we arbitrarily choose to only check
// NaNs on the first GPU.
has_inf_nan_list = []
for grad, _ in tower_grad:
has_inf_nan_list.append(tf.reduce_all(tf.is_finite(grad)))
self.grad_has_inf_nan = tf.logical_not(tf.reduce_all(has_inf_nan_list))
return tower_grad
def get_devices(self):
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 4
Instances Project Name: HewlettPackard/dlcookbook-dlbs
Commit Name: cec704bd54458bb5b86ca7db4061a5c597fac85e
Time: 2018-03-14
Author: sergey.serebryakov@hpe.com
File Name: python/tf_cnn_benchmarks/variable_mgr.py
Class Name: VariableMgrIndependent
Method Name: get_gradients_to_apply
Project Name: tensorflow/benchmarks
Commit Name: 2b118fa1419ad5101720af341d2e042e9b99713e
Time: 2018-01-26
Author: tanmingxing@google.com
File Name: scripts/tf_cnn_benchmarks/variable_mgr.py
Class Name: VariableMgrIndependent
Method Name: get_gradients_to_apply
Project Name: PyMVPA/PyMVPA
Commit Name: e1a69c7f2f8c0632f6957fbe4970bfa832de6eeb
Time: 2013-01-23
Author: nikolaas.oosterhof@unitn.it
File Name: mvpa2/misc/surfing/volsurf.py
Class Name: VolSurf
Method Name: surf_project_weights_nodewise