b39db6e2bf0c806554578b5c9895d9b7ef6bd48c,Orange/statistics/util.py,,_count_nans_per_row_sparse,#Any#Any#,13
Before Change
Count the number of nans (undefined) values per row.
items_per_row = 1 if X.ndim == 1 else X.shape[1]
counts = np.ones(X.shape[0]) * items_per_row
nnz_per_row = np.bincount(X.indices, minlength=len(counts))
counts -= nnz_per_row
if weights is not None:
counts *= weights
return np.sum(counts)
After Change
def _count_nans_per_row_sparse(X, weights):
Count the number of nans (undefined) values per row.
counts = np.fromiter((np.isnan(row.data).sum() for row in X), dtype=np.float)
if weights is not None:
counts *= weights
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 4
Instances Project Name: biolab/orange3
Commit Name: b39db6e2bf0c806554578b5c9895d9b7ef6bd48c
Time: 2017-09-09
Author: pavlin.g.p@gmail.com
File Name: Orange/statistics/util.py
Class Name:
Method Name: _count_nans_per_row_sparse
Project Name: biolab/orange3
Commit Name: ac892eddd865681c9746efeda9f1f094f26cc32f
Time: 2012-11-29
Author: janez.demsar@fri.uni-lj.si
File Name: Orange/data/filter.py
Class Name: Filter_Random
Method Name: __call__
Project Name: prody/ProDy
Commit Name: 223584e2a0b97b006b6ac944253e2573963a7a88
Time: 2018-09-25
Author: jamesmkrieger@gmail.com
File Name: prody/proteins/starfile.py
Class Name:
Method Name: parseImagesFromSTAR