592c161032bfd697ef6f2f334c5cd007062bec4b,rllib/models/tf/recurrent_net.py,LSTMWrapper,forward,#LSTMWrapper#Any#Any#Any#,176
Before Change
// Concat. prev-action/reward if required.
if self.model_config["lstm_use_prev_action_reward"]:
wrapped_out = tf.concat(
[
wrapped_out,
tf.reshape(
tf.cast(input_dict[SampleBatch.PREV_ACTIONS],
tf.float32), [-1, self.action_dim]),
tf.reshape(
tf.cast(input_dict[SampleBatch.PREV_REWARDS],
tf.float32), [-1, 1]),
],
axis=1)
// Then through our LSTM.
input_dict["obs_flat"] = wrapped_out
return super().forward(input_dict, state, seq_lens)
After Change
prev_a_r = []
if self.model_config["lstm_use_prev_action"]:
prev_a = input_dict[SampleBatch.PREV_ACTIONS]
if isinstance(self.action_space, (Discrete, MultiDiscrete)):
prev_a = one_hot(prev_a, self.action_space)
prev_a_r.append(
tf.reshape(tf.cast(prev_a, tf.float32), [-1, self.action_dim]))
if self.model_config["lstm_use_prev_reward"]:
prev_a_r.append(
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 3
Instances
Project Name: ray-project/ray
Commit Name: 592c161032bfd697ef6f2f334c5cd007062bec4b
Time: 2020-11-25
Author: sven@anyscale.io
File Name: rllib/models/tf/recurrent_net.py
Class Name: LSTMWrapper
Method Name: forward
Project Name: HyperGAN/HyperGAN
Commit Name: 9950f411a0ec5ae5c9b98959a84f25fd10f1c9ea
Time: 2017-06-10
Author: mikkel@255bits.com
File Name: hypergan/multi_component.py
Class Name: MultiComponent
Method Name: combine
Project Name: pandas-dev/pandas
Commit Name: affc4d5c1829441c4dec0f4c0dae9b6c5c298429
Time: 2020-10-22
Author: 45562402+rhshadrach@users.noreply.github.com
File Name: pandas/core/aggregation.py
Class Name:
Method Name: aggregate