7e9c3b7fe153b5f533f94aabaa1e35a6c58a5540,tpot/base.py,TPOTBase,fit,#TPOTBase#Any#Any#Any#,371
Before Change
try:
clf = clf.fit(features, classes)
except Exception:
raise ValueError("Error: Input data is not in a valid format. "
"Please confirm that the input data is scikit-learn compatible. "
"For example, the features must be a 2-D array and target labels "
"must be a 1-D array.")
// Set the seed for the GP run
if self.random_state is not None:
random.seed(self.random_state) // deap uses random
After Change
features = features.astype(np.float64)
if self._contains_nan(features):
features = Imputer(strategy="most_frequent").fit_transform(features)
self._check_dataset(features, classes)
// Set the seed for the GP run
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 3
Instances
Project Name: EpistasisLab/tpot
Commit Name: 7e9c3b7fe153b5f533f94aabaa1e35a6c58a5540
Time: 2017-04-26
Author: supacoofoo@gmail.com
File Name: tpot/base.py
Class Name: TPOTBase
Method Name: fit
Project Name: ysig/GraKeL
Commit Name: 0e84313d49f4b3f5aef0e0d558ecc34e271b2ad5
Time: 2018-01-24
Author: y.siglidis@gmail.com
File Name: grakel/graph_kernels.py
Class Name: GraphKernel
Method Name: fit
Project Name: AIRLab-POLIMI/mushroom
Commit Name: 1a2462f18707e04f294224053473668820111cf5
Time: 2017-07-23
Author: carlo.deramo@gmail.com
File Name: PyPi/approximators/regressor.py
Class Name: Regressor
Method Name: fit