5e1845ab9b7e0fa54affcaf6d1183dcdc1bc3d58,tutorials/mnist_blackbox.py,,main,#Any#,188

Before Change


    // Craft adversarial examples using the substitute
    adv_x = fgsm(x, substitute_preds, eps=0.3)
    eval_params = {"batch_size": FLAGS.batch_size}
    X_test_adv, = batch_eval(sess, [x], [adv_x], [X_test], args=eval_params)

    // Evaluate the accuracy of the "black-box" model on adversarial examples
    accuracy = model_eval(sess, x, y, bbox_preds, X_test_adv, Y_test,

After Change


    substitute_preds = train_substitute(sess, x, y, bbox_preds, X_sub, Y_sub)

    // Initialize the Fast Gradient Sign Method (FGSM) attack object.
    FGSM = FastGradientMethod(x, substitute_preds, sess=sess, clip_min=0.,
                              clip_max=1., params={"eps": 0.3, "ord": np.inf})

    // Craft adversarial examples using the substitute
    eval_params = {"batch_size": FLAGS.batch_size}
    X_test_adv = FGSM.craft(X_test)

    // Evaluate the accuracy of the "black-box" model on adversarial examples
    accuracy = model_eval(sess, x, y, bbox_preds, X_test_adv, Y_test,
                          args=eval_params)
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 4

Instances


Project Name: tensorflow/cleverhans
Commit Name: 5e1845ab9b7e0fa54affcaf6d1183dcdc1bc3d58
Time: 2017-03-26
Author: ngp5056@cse.psu.edu
File Name: tutorials/mnist_blackbox.py
Class Name:
Method Name: main


Project Name: tensorflow/cleverhans
Commit Name: 28af50891d3540e635c5e11fb2308bebc9580d79
Time: 2017-03-28
Author: ngp5056@cse.psu.edu
File Name: tutorials/mnist_tutorial_th.py
Class Name:
Method Name: main


Project Name: IBM/adversarial-robustness-toolbox
Commit Name: e7feb5694cb9954ec8a09877c27f7ca8c289aabb
Time: 2017-05-17
Author: valentina.zantedeschi@ibm.com
File Name: attack_on_mnist.py
Class Name:
Method Name: