if exclude_target: //to initialize featurizer weights
return features
self.target_est = self.get_estimator("target")
preds = None
if features is not None:
target_est = self.get_estimator("target")
target_fn = self.input_pipeline.get_target_input_fn(features)
After Change
features = [None]*n
for i in tqdm.tqdm(range(n), total=n, desc="Featurization"):
y = next(self._predictions)
for key in y:
print(np.shape(y[key]))
features[i] = y
if exclude_target: //to initialize featurizer weights
return features