a0ae4ee2efb684a81a53a99c8e7f2689cc74e0c8,dynamicgem/embedding/dynRNN.py,DynRNN,learn_embeddings,#DynRNN#Any#,81

Before Change


        // Process inputs
        [x_hat, y] = self._autoencoder(x_in)
        // Outputs
        x_diff = merge([x_hat, x_pred],
                       mode=lambda a, b: a - b,
                       output_shape=lambda L: L[1])

        // Objectives
        def weighted_mse_x(y_true, y_pred):
            """ Hack: This fn doesn"t accept additional arguments.
                      We use y_true to pass them.
                y_pred: Contains x_hat - x_pred
                y_true: Contains b
            """
            return KBack.sum(
                KBack.square(y_pred * y_true[:, 0:self._node_num]),
                axis=-1
            )

        // Model
        self._model = Model(input=[x_in, x_pred], output=x_diff)
        sgd = SGD(lr=self._xeta, decay=1e-5, momentum=0.99, nesterov=True)
        adam = Adam(lr=self._xeta, beta_1=0.9, beta_2=0.999, epsilon=1e-08)
        self._model.compile(optimizer=adam, loss=weighted_mse_x)

After Change


        // Process inputs
        [x_hat, y] = self._autoencoder(x_in)
        // Outputs
        x_diff = Subtract()([x_hat, x_in]) 
//         x_diff = merge([x_hat, x_pred],
//                        mode=lambda a, b: a - b,
//                        output_shape=lambda L: L[1])

        // Objectives
        def weighted_mse_x(y_true, y_pred):
            """ Hack: This fn doesn"t accept additional arguments.
                      We use y_true to pass them.
                y_pred: Contains x_hat - x_pred
                y_true: Contains b
            """
            return KBack.sum(
                KBack.square(y_pred * y_true[:, 0:self._node_num]),
                axis=-1
            )

        // Model
        self._model = Model(input=[x_in, x_pred], output=x_diff)
        sgd = SGD(lr=self._xeta, decay=1e-5, momentum=0.99, nesterov=True)
        adam = Adam(lr=self._xeta, beta_1=0.9, beta_2=0.999, epsilon=1e-08)
        self._model.compile(optimizer=adam, loss=weighted_mse_x)
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 5

Non-data size: 4

Instances


Project Name: palash1992/DynamicGEM
Commit Name: a0ae4ee2efb684a81a53a99c8e7f2689cc74e0c8
Time: 2018-11-03
Author: sujitchhetri@gmail.com
File Name: dynamicgem/embedding/dynRNN.py
Class Name: DynRNN
Method Name: learn_embeddings


Project Name: palash1992/DynamicGEM
Commit Name: 83aecfabec9137569d41c48cd1e84b00e8bb7d72
Time: 2018-11-03
Author: sujitchhetri@gmail.com
File Name: dynamicgem/embedding/ae_static.py
Class Name: AE
Method Name: learn_embeddings


Project Name: palash1992/DynamicGEM
Commit Name: 65dc973b99b6042cea5dbf5516ff02ac94f859f0
Time: 2018-11-03
Author: sujitchhetri@gmail.com
File Name: dynamicgem/embedding/dynAE.py
Class Name: DynAE
Method Name: learn_embeddings


Project Name: palash1992/DynamicGEM
Commit Name: 0c9ffc6744c4ef474de2e49db75483568f24e49c
Time: 2018-11-03
Author: sujitchhetri@gmail.com
File Name: dynamicgem/embedding/dynAERNN.py
Class Name: DynAERNN
Method Name: learn_embeddings


Project Name: palash1992/DynamicGEM
Commit Name: 4c80ea23581866773511ded242baf681d51ca29a
Time: 2018-11-12
Author: sujitchhetri@gmail.com
File Name: dynamicgem/embedding/dynRNN.py
Class Name: DynRNN
Method Name: learn_embeddings