4c3790c4553cef37eae4a4e308307f05772579cf,AutoML2015/models/evaluate.py,,evaluate,#Any#Any#Any#,16
Before Change
Y_optimization = Y_optimization_binary
if task_type == "multilabel.classification":
Y_pred = np.hstack([Y_pred[i][:, 1].reshape((-1, 1) )
for i in range(len(Y_pred))])
scoring_func = getattr(libscores, metric)
After Change
Y_optimization_pred)
score = scoring_func(csolution, cprediction, task=task_type)
Y_valid_pred = predict_proba(X_valid, model, task_type)
Y_test_pred = predict_proba(X_test, model, task_type)
err = 1 - score
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 3
Instances Project Name: automl/auto-sklearn
Commit Name: 4c3790c4553cef37eae4a4e308307f05772579cf
Time: 2014-12-22
Author: feurerm@informatik.uni-freiburg.de
File Name: AutoML2015/models/evaluate.py
Class Name:
Method Name: evaluate
Project Name: snorkel-team/snorkel
Commit Name: 40ba361ebc36b0a6ed5c026d9d6b71d42b71a60b
Time: 2019-08-13
Author: ajratner@gmail.com
File Name: tutorials/synthetic/synthetic.py
Class Name:
Method Name:
Project Name: automl/auto-sklearn
Commit Name: 1ec4287799a1ccfc019f564f3ce0de468de6e313
Time: 2015-04-09
Author: springj@informatik.uni-freiburg.de
File Name: ParamSklearn/implementations/ProjLogit.py
Class Name: ProjLogit
Method Name: predict