6595a42576f6f648ff7dabd78c53f1ab0001d8d4,examples/low_data/toxcast_maml.py,,,#,8

Before Change


  negatives = [j for j in range(n_molecules) if w[j, i] > 0 and y[j, i] == 0]
  task_molecules.append(
      np.concatenate(
          [positives[:5], negatives[:5], positives[5:10], negatives[5:10]]))

// Create the model to train.

After Change


  positives = [j for j in range(n_molecules) if w[j, i] > 0 and y[j, i] == 1]
  negatives = [j for j in range(n_molecules) if w[j, i] > 0 and y[j, i] == 0]
  np.random.shuffle(positives)
  np.random.shuffle(negatives)
  mols = sum((list(x) for x in zip(positives, negatives)), [])
  task_molecules.append(mols)

// Create the model to train.  We use a simple fully connected network with
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 4

Instances


Project Name: deepchem/deepchem
Commit Name: 6595a42576f6f648ff7dabd78c53f1ab0001d8d4
Time: 2017-08-18
Author: peastman@stanford.edu
File Name: examples/low_data/toxcast_maml.py
Class Name:
Method Name:


Project Name: kundajelab/dragonn
Commit Name: c1431d47ce335327c5213cef7bb7ae4f4d2d29b3
Time: 2019-02-06
Author: annashcherbina@gmail.com
File Name: dragonn/generators.py
Class Name: DataGenerator
Method Name: __init__


Project Name: automl/auto-sklearn
Commit Name: a9810b5f0f55afbd36cd1f919c23e803a4810585
Time: 2017-02-13
Author: feurerm@informatik.uni-freiburg.de
File Name: scripts/03_calculate_metafeatures.py
Class Name:
Method Name: