"consider using `CHANNELWISE_DECONV` operation.")
// simply replicate input values to
// local regions of (kernel_size ** spatial_rank) element
kernel_size_all_dims = get_list_parameter(self.kernel_size, spatial_rank)
pixel_num = 1
for x in kernel_size_all_dims:
pixel_num = pixel_num * x
repmat = np.hstack((pixel_num, [1] * spatial_rank, 1)).flatten()
output_tensor = tf.tile(input=input_tensor, multiples=repmat)
output_tensor = tf.batch_to_space_nd(
output_tensor,