3b2a90ad9bcebe6ef004da614f2ecd2d1e29fdb1,imagenet.py,,main,#,10

Before Change


    optimizer = optim.SGD(lr=0.6 / 1024 * args.batch_size, momentum=0.9, weight_decay=1e-4)
    scheduler = lr_scheduler.MultiStepLR([50, 70])

    c = [callbacks.AccuracyCallback(), callbacks.LossCallback()]
    r = reporters.TQDMReporter(range(args.epochs), callbacks=c)
    tb = reporters.TensorboardReporter(c)
    rep = callbacks.CallbackList(r, tb, callbacks.WeightSave("checkpoints"))

    if args.distributed:
        // DistributedSupervisedTrainer sets up torch.distributed
        if args.local_rank == 0:
            print("\nuse DistributedDataParallel")
        trainer = DistributedSupervisedTrainer(model, optimizer, F.cross_entropy, callbacks=rep, scheduler=scheduler,
                                               init_method=args.init_method, backend=args.backend)
    else:
        multi_gpus = torch.cuda.device_count() > 1
        if multi_gpus:
            print("\nuse DataParallel")
        trainer = SupervisedTrainer(model, optimizer, F.cross_entropy, callbacks=rep,
                                    scheduler=scheduler, data_parallel=multi_gpus)
    // if distributed, need to setup loaders after DistributedSupervisedTrainer
    train_loader, test_loader = imagenet_loaders(args.root, args.batch_size, distributed=args.distributed,
                                                 num_train_samples=args.batch_size * 10 if args.debug else None,
                                                 num_test_samples=args.batch_size * 10 if args.debug else None)

After Change


                                                 num_train_samples=args.batch_size * 10 if args.debug else None,
                                                 num_test_samples=args.batch_size * 10 if args.debug else None)

    c = [callbacks.AccuracyCallback(), callbacks.AccuracyCallback(k=5),
         callbacks.LossCallback(),
         callbacks.WeightSave("."),
         reporters.TensorboardReporter("."),
         reporters.TQDMReporter(range(args.epochs))]

    with SupervisedTrainer(model, optimizer, F.cross_entropy,
                           callbacks=c,
                           scheduler=scheduler,
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 4

Instances


Project Name: moskomule/senet.pytorch
Commit Name: 3b2a90ad9bcebe6ef004da614f2ecd2d1e29fdb1
Time: 2019-12-14
Author: hataya@keio.jp
File Name: imagenet.py
Class Name:
Method Name: main


Project Name: Scitator/catalyst
Commit Name: 2775c15702fd52f081ff8fded51f4f38877659df
Time: 2019-08-01
Author: scitator@gmail.com
File Name: examples/_tests_scripts/z_classification.py
Class Name:
Method Name: