174ff6fbaaef8678313f8722690c5db4bbe58ae9,hypergan/trainers/simultaneous_trainer.py,SimultaneousTrainer,_step,#SimultaneousTrainer#Any#,26
Before Change
G = self.gan.generator(self.gan.latent.sample())
D = self.gan.discriminator
d_real = D(self.gan.inputs.next()[0])
d_fake = D(G)
criterion = torch.nn.BCEWithLogitsLoss()
g_loss = criterion(d_fake, torch.ones_like(d_fake))
d_loss = criterion(d_real, torch.ones_like(d_real)) + criterion(d_fake, torch.zeros_like(d_fake))
//d_loss, g_loss = loss.sample
//g_loss.mean().backward(retain_graph=True)
After Change
g_loss.mean().backward(retain_graph=True)
self.optimizer.step()
self.optimizer.zero_grad()
d_loss.mean().backward()
if self.current_step % 10 == 0:
self.print_metrics(self.current_step)
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 4
Instances
Project Name: HyperGAN/HyperGAN
Commit Name: 174ff6fbaaef8678313f8722690c5db4bbe58ae9
Time: 2020-02-07
Author: martyn@255bits.com
File Name: hypergan/trainers/simultaneous_trainer.py
Class Name: SimultaneousTrainer
Method Name: _step
Project Name: pytorch/fairseq
Commit Name: 8bafae2ee7044529543768eec63d8460d894f5c6
Time: 2017-10-19
Author: myleott@fb.com
File Name: fairseq/multiprocessing_trainer.py
Class Name: MultiprocessingTrainer
Method Name: _async_train_step