e8b014cca88e153f3df231bedce85fbe53d967b5,demo_embedding.py,,,#,4

Before Change


import keyword
import torch
meta = []
for i in range(10):
    meta = meta+keyword.kwlist
meta = meta[:100]

for i, v in enumerate(meta):
    meta[i] = v+str(i)

After Change



add_embedding(torch.randn(100, 5), save_path="embedding1", metadata=meta, label_img=label_img)
add_embedding(torch.randn(100, 5), save_path="embedding2", label_img=label_img)
add_embedding(torch.randn(100, 5), save_path="embedding3", metadata=meta)

//tensorboard --logdir embedding1
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 4

Instances


Project Name: lanpa/tensorboardX
Commit Name: e8b014cca88e153f3df231bedce85fbe53d967b5
Time: 2017-07-25
Author: huang.dexter@gmail.com
File Name: demo_embedding.py
Class Name:
Method Name:


Project Name: jsalt18-sentence-repl/jiant
Commit Name: 2573c649518391ada6214cfc72d20421dfac4072
Time: 2018-03-16
Author: wang.alex.c@gmail.com
File Name: src/preprocess.py
Class Name:
Method Name: get_embeddings


Project Name: SPFlow/SPFlow
Commit Name: 99f6a9b9b366e20ebc300fc5be904308c17c484f
Time: 2020-04-01
Author: steven.lang.mz@gmail.com
File Name: src/spn/tests/test_layerwise.py
Class Name: TestRATLayerwise
Method Name: test_rat_sampling