c87a29c49f488ce290c5942d964bde73c3ff2c91,samples/dqn_expreplay.py,,,#,15
Before Change
test_s = Variable(torch.from_numpy(np.array([env.reset()], dtype=np.float32)))
print(model(test_s))
print(action_selector(model(test_s)))
print(loss_fn(model(test_s), Variable(torch.Tensor([[1.0, 0.0, 2.0]]))))
// TODO: implement env pooling
exp_replay = ExperienceReplayBuffer(env, params, buffer_size=100)
After Change
// populate buffer
exp_replay.populate(50)
// sample batch from buffer
batch = exp_replay.sample(50)
// convert experience batch into training samples
pass
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 4
Instances
Project Name: Shmuma/ptan
Commit Name: c87a29c49f488ce290c5942d964bde73c3ff2c91
Time: 2017-04-26
Author: maxl@fornova.net
File Name: samples/dqn_expreplay.py
Class Name:
Method Name:
Project Name: PacktPublishing/Deep-Reinforcement-Learning-Hands-On
Commit Name: ab5f6d6986fc4f1eebc0b5b3c8972daba029954b
Time: 2018-01-18
Author: max.lapan@gmail.com
File Name: ch13/adhoc/wob_clicks.py
Class Name:
Method Name:
Project Name: Shmuma/ptan
Commit Name: 5e63df5e0b53b583b6865cc099cecd5436563113
Time: 2017-06-22
Author: max.lapan@gmail.com
File Name: samples/reinforce.py
Class Name:
Method Name: