// identify and flag intercept and cell-means terms (i.e.,
// full-rank dummy codes), which receive special priors
constant = np.atleast_2d(pred_df.T).T.sum(1).var() == 0
for col, ind in pred_df.design_info.column_name_indexes.items():
lev_data = grpr_df.multiply(pred_df.iloc[:, ind],
axis=0)
After Change
else:
cat = False
pred_data = pred_data[:, None] // Must be 2D later
term = RandomTerm(self, label, lev_data, pred_data,
grpr_df.values, categorical=cat)
self.terms[label] = term