028274e8f52c54b10d632a61ee19a6e64f7a90e6,examples/MotorImagery/two_class_motor_imagery.py,,,#,24
Before Change
from moabb.datasets.physionet_mi import PhysionetMI
from moabb.datasets.openvibe_mi import OpenvibeMI
datasets = [AlexMI(), OpenvibeMI(), BNCI2015004(motor_imagery=True),
PhysionetMI(), GigaDbMI(), BBCIEEGfNIRS()]
pipelines = OrderedDict()
pipelines["MDM"] = make_pipeline(Covariances("oas"), MDM())
pipelines["TS"] = make_pipeline(Covariances("oas"), TSclassifier())
pipelines["CSP+LDA"] = make_pipeline(Covariances("oas"), CSP(8), LDA())
// pipelines["CSP+SVM"] = make_pipeline(Covariances("oas"), CSP(8), SVC())
context = MotorImageryTwoClasses(datasets=datasets, pipelines=pipelines)
results = context.evaluate(verbose=True)
for p in results.keys():
results[p].to_csv("../../results/MotorImagery/TwoClass/%s.csv2" % p)
results = pd.concat(results.values())
print(results.groupby("Pipeline").mean())
res = results.pivot(values="Score", columns="Pipeline")
sns.lmplot(data=res, x="CSP+LDA", y="TS", fit_reg=False)
plt.xlim(0.4, 1)
plt.ylim(0.4, 1)
plt.plot([0.4, 1], [0.4, 1], ls="--", c="k")
After Change
context.process()
for v in context.results.data.values():
print(v)
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 4
Instances
Project Name: NeuroTechX/moabb
Commit Name: 028274e8f52c54b10d632a61ee19a6e64f7a90e6
Time: 2018-02-14
Author: vjayaram@danube.is.localnet
File Name: examples/MotorImagery/two_class_motor_imagery.py
Class Name:
Method Name:
Project Name: ClimbsRocks/auto_ml
Commit Name: 2639d96db0e2811bc7744d4d771b1b93bb6169f8
Time: 2016-11-06
Author: climbsbytes@gmail.com
File Name: auto_ml/predictor.py
Class Name: Predictor
Method Name: train_ensemble
Project Name: AllenCellModeling/pytorch_fnet
Commit Name: cd6ea74225b7c29238de13229aa1347db4098fea
Time: 2018-01-29
Author: chek.o@outlook.com
File Name: train_model.py
Class Name:
Method Name: main