cf9612933e79ba8ed6457b5013f9aa9f8f3376f5,nisl/signals.py,,high_variance_confounds,#Any#Any#Any#,174

Before Change


        // Adding a transposition gives F order computation.
        var = np.mean((series.T ** 2).T, axis=0)
    else:
        var = np.mean(series ** 2, axis=0)

    var_thr = stats.scoreatpercentile(var, 100. - percentile)
    series = series[:, var > var_thr]  // extract columns (i.e. features)
    // Return the singular vectors with largest singular values

After Change


    // Compute variance without mean removal.
    // The execution speed of these three lines is independent of array
    // ordering (C or F)
    var = np.copy(series)
    var **= 2
    var = var.mean(axis=0)

    var_thr = stats.scoreatpercentile(var, 100. - percentile)
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 4

Instances


Project Name: nilearn/nilearn
Commit Name: cf9612933e79ba8ed6457b5013f9aa9f8f3376f5
Time: 2013-04-19
Author: philippe.gervais@inria.fr
File Name: nisl/signals.py
Class Name:
Method Name: high_variance_confounds


Project Name: nilearn/nilearn
Commit Name: 6704c535b8c59ab3b9b98c0489a051654c1ee727
Time: 2013-04-05
Author: philippe.gervais@inria.fr
File Name: nisl/signals.py
Class Name:
Method Name: _standardize


Project Name: datascienceinc/Skater
Commit Name: 0bab786d05391d24fd101f3aed71e6f4b3f14b55
Time: 2017-05-08
Author: aikramer2@gmail.com
File Name: lynxes/core/global_interpretation/feature_importance.py
Class Name: FeatureImportance
Method Name: feature_importance