s=self.__trained_model["beta.pure"].shape[0])
//s=self.__lowest_Cp_step)
fit = N.asarray(res["fit"])
if len(fit.shape) == 0:
// if we just got 1 sample with a scalar
fit = fit.reshape( (1,) )
return fit
After Change
class_ind = rpy.r.as_vector(class_ind)
// convert the strings to ints and subtract 1
class_ind = N.array([int(float(c))-1 for c in class_ind])
// convert to actual labels
classes = self.__ulabels[class_ind]
if not classes is None:
// set the values and return none
self.values = values