e93def343b5add2be72076be7526b043c81807b2,pymc3/distributions/distribution.py,,generate_samples,#Any#,279
Before Change
broadcast_shape,
repeat_shape + prefix_shape,
*args, **kwargs)
if broadcast_shape == (1,) and not prefix_shape == ():
samples = np.reshape(samples, repeat_shape + prefix_shape)
else:
samples = replicate_samples(generator,
broadcast_shape,
prefix_shape,
After Change
else:
prefix_shape = tuple(dist_shape)
repeat_shape = infer_shape(size)
if broadcast_shape == (1,) and prefix_shape == ():
if size is not None:
samples = generator(size=size, *args, **kwargs)
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 4
Instances Project Name: pymc-devs/pymc3
Commit Name: e93def343b5add2be72076be7526b043c81807b2
Time: 2017-01-09
Author: maxim.v.kochurov@gmail.com
File Name: pymc3/distributions/distribution.py
Class Name:
Method Name: generate_samples
Project Name: pymc-devs/pymc3
Commit Name: 24b464fb9ae57e009e324446b2d3a9a555a7a5a7
Time: 2017-08-17
Author: w.j.engels@gmail.com
File Name: pymc3/gp/gp.py
Class Name: MarginalSparse
Method Name: marginal_likelihood
Project Name: pymc-devs/pymc3
Commit Name: 24b464fb9ae57e009e324446b2d3a9a555a7a5a7
Time: 2017-08-17
Author: w.j.engels@gmail.com
File Name: pymc3/gp/gp.py
Class Name: Marginal
Method Name: marginal_likelihood