14ecf5f181a543144bb2283f40daca6236a83b62,examples/mnist/eth_ngram_mnist.py,,,#,11
Before Change
print("\nAll activity accuracy: %.2f (last), %.2f (average), %.2f (best)" \
% (accuracy["all"][-1], np.mean(accuracy["all"]), np.max(accuracy["all"])))
print("Proportion weighting accuracy: %.2f (last), %.2f (average), %.2f (best)\n" \
% (accuracy["proportion"][-1], np.mean(accuracy["proportion"]),
np.max(accuracy["proportion"])))
// Assign labels to excitatory layer neurons.
assignments, proportions, rates = assign_labels(spike_record, labels[i - update_interval:i], 10, rates)
After Change
accuracy["proportion"].append(100 * torch.sum(labels[i - update_interval:i].long() \
== proportion_pred) / update_interval)
accuracy["ngram"].append(100 * torch.sum(labels[i - update_interval:i].long() \
== n_gram_pred) / update_interval)
for eval in ["all", "proportion", "ngram"]:
print(f"All activity accuracy: {accuracy[eval][-1]} (last), {np.mean(accuracy[eval])} (average), \
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 4
Instances
Project Name: BindsNET/bindsnet
Commit Name: 14ecf5f181a543144bb2283f40daca6236a83b62
Time: 2018-06-18
Author: hqkhan@umass.edu
File Name: examples/mnist/eth_ngram_mnist.py
Class Name:
Method Name:
Project Name: pytorch/examples
Commit Name: 77a6ec73c53c5cc62a2ae451694537144afa5644
Time: 2016-09-14
Author: alerer@fb.com
File Name: mnist/main.py
Class Name:
Method Name: test