33ef02d09c16aaf5191115d0a6a3d3a9b6242ba1,gpytorch/utils/lanczos.py,,lanczos_tridiag_to_diag,#Any#,154
Before Change
if t_mat.size(-1) < 64:
orig_device = t_mat.device
retr = torch.symeig(t_mat.cpu(), eigenvectors=True)
return (r.to(orig_device) for r in retr)
else:
return torch.symeig(t_mat, eigenvectors=True)
After Change
evals, evecs = retr
mask = evals.ge(0)
evecs = evecs * mask.type_as(evecs).unsqueeze(-2)
evals = evals.masked_fill_(~mask, 1)
return evals.to(orig_device), evecs.to(orig_device)
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 3
Instances
Project Name: cornellius-gp/gpytorch
Commit Name: 33ef02d09c16aaf5191115d0a6a3d3a9b6242ba1
Time: 2019-11-08
Author: gardner.jake@gmail.com
File Name: gpytorch/utils/lanczos.py
Class Name:
Method Name: lanczos_tridiag_to_diag
Project Name: pytorch/fairseq
Commit Name: 8db7b1c7f8af2d8158584f1ea7f2aaf8f4116f11
Time: 2019-07-17
Author: taylanbil@google.com
File Name: fairseq/criterions/label_smoothed_cross_entropy.py
Class Name: LabelSmoothedCrossEntropyCriterion
Method Name: compute_loss