031392ff2cbb5703558d17a676a456521f754190,mnist/main.py,,train,#Any#,67
Before Change
batch_data_t = batch_data_t.cuda()
batch_targets_t = batch_targets_t.cuda()
batch_data = Variable(batch_data_t, requires_grad=False)
batch_targets = Variable(batch_targets_t, requires_grad=False)
for i in range(0, training_data.size(0), BATCH_SIZE):
optimizer.zero_grad()
batch_data.data[:] = training_data[i:i+BATCH_SIZE]
batch_targets.data[:] = training_labels[i:i+BATCH_SIZE]
After Change
loss = loss.data[0]
optimizer.step()
print("Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.4f}"
.format(epoch, end, opt.trainSize, float(end)/opt.trainSize*100, loss))
def test(epoch):
// create buffers for mini-batch
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 4
Instances
Project Name: pytorch/examples
Commit Name: 031392ff2cbb5703558d17a676a456521f754190
Time: 2016-12-15
Author: soumith@fb.com
File Name: mnist/main.py
Class Name:
Method Name: train
Project Name: mahyarnajibi/SNIPER
Commit Name: 454093e87e4e13d6b0611281a4d86b476f84c480
Time: 2018-04-13
Author: bharatsingh430@gmail.com
File Name: symbols/faster/resnet_mx_101_rpn.py
Class Name: resnet_mx_101
Method Name: get_symbol_rcnn