8f420a3b35944dcfa470dee958ef61dee221ce02,implementations/dualgan/datasets.py,MNISTM,__getitem__,#MNISTM#Any#,60
Before Change
// doing this so that it is consistent with all other datasets
// to return a PIL Image
img = Image.fromarray(img.squeeze().numpy() , mode="RGB")
if self.transform is not None:
img = self.transform(img)
After Change
img_pair = self.transform(Image.open(self.files[index % len(self.files)]))
_, h, w = img_pair.shape
half_w = int(w/2)
item_A = img_pair[:, :, :half_w]
item_B = img_pair[:, :, half_w:]
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 4
Instances Project Name: eriklindernoren/PyTorch-GAN
Commit Name: 8f420a3b35944dcfa470dee958ef61dee221ce02
Time: 2018-04-23
Author: eriklindernoren@gmail.com
File Name: implementations/dualgan/datasets.py
Class Name: MNISTM
Method Name: __getitem__
Project Name: IBM/adversarial-robustness-toolbox
Commit Name: e21ef336207b0f9ae378c77430d298945827830a
Time: 2019-02-12
Author: M.N.Tran@ibm.com
File Name: art/classifiers/pytorch.py
Class Name: PyTorchClassifier
Method Name: get_activations
Project Name: IBM/adversarial-robustness-toolbox
Commit Name: a922855fe7aef360e4a360caa800388d9c843355
Time: 2019-07-23
Author: beat.buesser@ie.ibm.com
File Name: art/classifiers/tensorflow.py
Class Name: TensorflowV2Classifier
Method Name: predict