x = self.relu(self.fc2(x))
return self.softmax(x)
model = Net().cuda()
criterion = nn.ClassNLLCriterion()
// Training settings
After Change
def print_header(msg):
print("===>", msg)
if not os.path.exists("data/processed/training.pt"):
import data
// Data
print_header("Loading data")
with open("data/processed/training.pt", "rb") as f:
training_set = torch.load(f)
with open("data/processed/test.pt", "rb") as f: