b037591ca387624db8c70e146272f25f9db8bd0a,imblearn/ensemble/_forest.py,BalancedRandomForestClassifier,fit,#BalancedRandomForestClassifier#Any#Any#Any#,387
Before Change
// Validate or convert input data
X = check_array(X, accept_sparse="csc", dtype=DTYPE)
y = check_array(y, accept_sparse="csc", ensure_2d=False, dtype=None)
if sample_weight is not None:
sample_weight = check_array(sample_weight, ensure_2d=False)
if issparse(X):
// Pre-sort indices to avoid that each individual tree of the
After Change
// Validate or convert input data
if issparse(y):
raise ValueError(
"sparse multilabel-indicator for y is not supported."
)
X, y = self._validate_data(X, y, multi_output=True,
accept_sparse="csc", dtype=DTYPE)
if sample_weight is not None:
sample_weight = _check_sample_weight(sample_weight, X)
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 3
Instances Project Name: scikit-learn-contrib/imbalanced-learn
Commit Name: b037591ca387624db8c70e146272f25f9db8bd0a
Time: 2020-06-08
Author: g.lemaitre58@gmail.com
File Name: imblearn/ensemble/_forest.py
Class Name: BalancedRandomForestClassifier
Method Name: fit
Project Name: scikit-learn/scikit-learn
Commit Name: 76314fbe47fc47d841e22ebf2f9e8b26431b2ed2
Time: 2020-01-21
Author: contact@nicolas-hug.com
File Name: sklearn/calibration.py
Class Name: CalibratedClassifierCV
Method Name: fit
Project Name: metric-learn/metric-learn
Commit Name: 130cbadff294b686e466d430f26b2d069f6bbf59
Time: 2019-06-07
Author: 31916524+wdevazelhes@users.noreply.github.com
File Name: metric_learn/itml.py
Class Name: _BaseITML
Method Name: _fit