516c2a4c7e8f92e1ea299e966215c2ffe4c5b980,cifar10.py,,,#,14
Before Change
test_generator = ImageDataGenerator(featurewise_center=True,
featurewise_std_normalization=True)
test_generator.fit(testX, augment=True, seed=0)
// Load model
model.load_weights("weights/DenseNet-40-12-CIFAR10.h5")
print("Model loaded.")
After Change
// nb_val_samples=testX.shape[0], verbose=2)
yPreds = model.predict(testX)
yPred = np.argmax(yPreds, axis=1)
yTrue = testY
accuracy = metrics.accuracy_score(yTrue, yPred) * 100
error = 100 - accuracy
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 3
Instances
Project Name: titu1994/DenseNet
Commit Name: 516c2a4c7e8f92e1ea299e966215c2ffe4c5b980
Time: 2016-12-07
Author: titu1994@gmail.com
File Name: cifar10.py
Class Name:
Method Name:
Project Name: IBM/adversarial-robustness-toolbox
Commit Name: 46ad98c1b619502c926c657c1a4c4276d2fd1f79
Time: 2018-05-01
Author: Maria-Irina.Nicolae@ibm.com
File Name: art/defences/adversarial_trainer_unittest.py
Class Name: TestAdversarialTrainer
Method Name: test_shared_model_mnist
Project Name: IBM/adversarial-robustness-toolbox
Commit Name: 349ac0c5797503e22370ced84270b9b28bdff342
Time: 2018-07-09
Author: Maria-Irina.Nicolae@ibm.com
File Name: art/defences/adversarial_trainer.py
Class Name: AdversarialTrainer
Method Name: fit