fca285821740bcc013bfe27b5dd11b7fdb9b9812,gpytorch/lazy/kronecker_product_added_diag_lazy_tensor.py,KroneckerProductAddedDiagLazyTensor,_solve,#KroneckerProductAddedDiagLazyTensor#Any#Any#Any#,49
Before Change
lt = self.lazy_tensor.to(torch.double)
dlt = self.diag_tensor.to(torch.double)
KDinv = KroneckerProductLazyTensor(
*[tfull.matmul(tdiag.inverse()) for tfull, tdiag in zip(lt.lazy_tensors, dlt.lazy_tensors)]
)
// TODO: Figure out how to cache the decompositon for use in later solves
Lambda, S = KDinv.symeig(eigenvectors=True)
LambdaI = DiagLazyTensor(Lambda + 1)
tmp_term = S.matmul(LambdaI.inv_matmul(S._transpose_nonbatch().matmul(rhs)))
After Change
// K^{-1} b - K^{-1} (S (Lambda + I)^{-1} S^T b).
// Each sub-matrix D_i^{-1} has constant diagonal, so we may scale the eigenvalues of the
// eigendecomposition of K_i by its inverse to get an eigendecomposition of K_i D_i^{-1}.
sub_evals, sub_evecs = [], []
for lt_, dlt_ in zip(lt.lazy_tensors, dlt.lazy_tensors):
evals_, evecs_ = lt_.symeig(eigenvectors=True)
sub_evals.append(DiagLazyTensor(evals_ / dlt_.diag_values))
sub_evecs.append(evecs_)
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 4
Instances Project Name: cornellius-gp/gpytorch
Commit Name: fca285821740bcc013bfe27b5dd11b7fdb9b9812
Time: 2021-01-18
Author: balandat@fb.com
File Name: gpytorch/lazy/kronecker_product_added_diag_lazy_tensor.py
Class Name: KroneckerProductAddedDiagLazyTensor
Method Name: _solve
Project Name: cornellius-gp/gpytorch
Commit Name: ad18add8ae7da04213813b5675b903bbf4be1ebd
Time: 2021-02-10
Author: wjm363@nyu.edu
File Name: gpytorch/lazy/kronecker_product_added_diag_lazy_tensor.py
Class Name: KroneckerProductAddedDiagLazyTensor
Method Name: _root_decomposition
Project Name: cornellius-gp/gpytorch
Commit Name: ad18add8ae7da04213813b5675b903bbf4be1ebd
Time: 2021-02-10
Author: wjm363@nyu.edu
File Name: gpytorch/lazy/kronecker_product_added_diag_lazy_tensor.py
Class Name: KroneckerProductAddedDiagLazyTensor
Method Name: _root_inv_decomposition