9d56361641a64ff73ac630812ecd4964eedbc7aa,gat/graph_attention_layer.py,GraphAttention,call,#GraphAttention#Any#,72

Before Change


            combination_slices = tf.unstack(K.reshape(combinations, (B, -1, 2 * self.F_)))
            output_features = []
            for slice in combination_slices:
                dense = Dense(1)(slice)  // N x 1 (basically "a(Wh_i, Wh_j)" in the paper)
                // TODO: masking
                e_i = K.reshape(dense, (1, -1))  // 1 x N (e_i in the paper)
                softmax = K.squeeze(K.softmax(e_i))  // N (alpha_i in the paper)
                softmax_broadcast = K.transpose(K.reshape(K.tile(softmax, [self.F_]), [self.F_, -1]))
                node_features = K.sum(softmax_broadcast * linear_transf, axis=0)
                if self.use_bias:
                    output = K.bias_add(node_features, self.bias)

After Change



    def call(self, inputs):
        X = inputs[0]  // input graph (B x F)
        G = inputs[1]  // full graph (N x F) (this is necessary in code, but not in theory. Check section 2.2 of the paper)
        B = K.shape(X)[0]  // Get batch size at runtime
        N = K.shape(G)[0]  // Get number of nodes in the graph at runtime

        outputs = []  // Will store the outputs of each attention head (B x F" or B x KF")
        for head in range(self.attention_heads):
            kernel = self.kernels[head]  // W in the paper (F x F")
            attention_kernel = self.attention_kernels[head]  // Attention network a in paper (2*F" x 1)

            // Compute inputs to attention network
            linear_transf_X = K.dot(X, kernel)  // B x F"
            linear_transf_G = K.dot(G, kernel)  // N x F"

            // Repeat feature vectors of input: [[1], [2]] becomes [[1], [1], [2], [2]]
            repeated = K.reshape(K.tile(linear_transf_X, [1, N]), (-1, self.F_))  // B*N x F"
            // Tile feature vectors of full graph: [[1], [2]] becomes [[1], [2], [1], [2]]
            tiled = K.tile(linear_transf_G, [B, 1])  // B*N x F"
            // Build combinations
            combinations = K.concatenate([repeated, tiled])  // N*B x 2F"
            combination_slices = K.reshape(combinations, (B, -1, 2 * self.F_))  // B x N x 2F"

            // Attention head
            dense = K.dot(combination_slices, attention_kernel)  // B x N x 1 (a(Wh_i, Wh_j) in the paper)
            dense = K.squeeze(dense, -1)  // B x N
            dense = K.softmax(dense)  // B x N

            // TODO: masking with Vaswani method (add -inf to masked coefficients)
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 4

Instances


Project Name: danielegrattarola/keras-gat
Commit Name: 9d56361641a64ff73ac630812ecd4964eedbc7aa
Time: 2017-11-09
Author: daniele.grattarola@gmail.com
File Name: gat/graph_attention_layer.py
Class Name: GraphAttention
Method Name: call


Project Name: deepfakes/faceswap
Commit Name: b7b1bd5c6f7892061a9915cd27d19360482d1fd8
Time: 2019-08-03
Author: vrooman.kyle@gmail.com
File Name: lib/model/losses.py
Class Name:
Method Name: gmsd_loss


Project Name: geomstats/geomstats
Commit Name: 072e5680310c1cefef7e520c16bb20e92da3016d
Time: 2020-01-17
Author: ninamio78@gmail.com
File Name: geomstats/geometry/hypersphere.py
Class Name: HypersphereMetric
Method Name: exp