// We need a baseline to understand how good is any future prediction
print("Compute a baseline: the mean of all training data")
print("Baseline at test time:", mean_square_error(np.mean(y[0]), y_test))
// Instantiate Alice, Bob and Carol.
// Each client gets the public key at creation
After Change
// Take gradient steps
clients[0].gradient_step(aggr)
clients[1].gradient_step(aggr)
clients[2].gradient_step(aggr)
for (i, c) in enumerate(clients):
y_pred = c.predict(c.X)
print(mean_square_error(y_pred, c.y))