8184b9fdf51e3f75835fe1f2d56c294d16686241,examples/federated_learning_with_encryption.py,,,#,162

Before Change



    // We need a baseline to understand how good is any future prediction
    print("Compute a baseline: the mean of all training data")
    print("Baseline at test time:", mean_square_error(np.mean(y[0]), y_test))

    // Instantiate Alice, Bob and Carol.
    // Each client gets the public key at creation

After Change


        // Take gradient steps
        clients[0].gradient_step(aggr)
        clients[1].gradient_step(aggr)
        clients[2].gradient_step(aggr)

    for (i, c) in enumerate(clients):
        y_pred = c.predict(c.X)
        print(mean_square_error(y_pred, c.y))
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 3

Instances


Project Name: data61/python-paillier
Commit Name: 8184b9fdf51e3f75835fe1f2d56c294d16686241
Time: 2017-06-20
Author: giorgio.patrini@anu.edu.au
File Name: examples/federated_learning_with_encryption.py
Class Name:
Method Name:


Project Name: data61/python-paillier
Commit Name: 103e31b4a2518797606d3b93440740df0532770d
Time: 2017-06-20
Author: giorgio.patrini@anu.edu.au
File Name: examples/federated_learning_with_encryption.py
Class Name:
Method Name:


Project Name: data61/python-paillier
Commit Name: 103e31b4a2518797606d3b93440740df0532770d
Time: 2017-06-20
Author: giorgio.patrini@anu.edu.au
File Name: examples/federated_learning_with_encryption.py
Class Name: Client
Method Name: fit