f1b5b349fbffae3ae1ca0a3ca862ba7b81ddbaa1,mlbox/model/regression/regressor.py,Regressor,feature_importances,#Regressor#,173
Before Change
importance_bag.append(d.copy())
for i, col in enumerate(self.__col):
importance[col] = np.mean(
filter(lambda x: x != 0, [k[col] if col in k else 0
for k in importance_bag]))
else:
importance = {}
After Change
list_filtered = filter(lambda x: x != 0,
[k[col] if col in k else 0
for k in importance_bag])
importance[col] = np.mean(list(list_filtered))
else:
importance = {}
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 4
Instances
Project Name: AxeldeRomblay/MLBox
Commit Name: f1b5b349fbffae3ae1ca0a3ca862ba7b81ddbaa1
Time: 2019-06-07
Author: hgerard.pro@gmail.com
File Name: mlbox/model/regression/regressor.py
Class Name: Regressor
Method Name: feature_importances
Project Name: AxeldeRomblay/MLBox
Commit Name: f1b5b349fbffae3ae1ca0a3ca862ba7b81ddbaa1
Time: 2019-06-07
Author: hgerard.pro@gmail.com
File Name: mlbox/model/classification/classifier.py
Class Name: Classifier
Method Name: feature_importances
Project Name: deepfakes/faceswap
Commit Name: 343392813338ae7b10b0a3bbb3b5a9a7da6e588d
Time: 2020-08-27
Author: 36920800+torzdf@users.noreply.github.com
File Name: lib/model/losses_plaid.py
Class Name: LossWrapper
Method Name: __call__