157041a86ecda19d43967fc3028d7b48fe17b243,gpytorch/variational/variational_strategy.py,VariationalStrategy,prior_distribution,#VariationalStrategy#,63

Before Change


        this is done simply by calling the user defined GP prior on the inducing point data directly.
        
        out = self.model.forward(self.inducing_points)
        res = MultivariateNormal(
            out.mean, out.lazy_covariance_matrix.add_jitter()
        )
        return res

    def kl_divergence(self):
        variational_dist_u = self.variational_distribution.variational_distribution

After Change


    @property
    @cached(name="prior_distribution_memo")
    def prior_distribution(self):
        zeros = torch.zeros_like(self.inducing_points[..., 0])
        ones = torch.ones_like(zeros)
        res = MultivariateNormal(zeros, DiagLazyTensor(ones))
        return res

    def forward(self, x):
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 4

Instances


Project Name: cornellius-gp/gpytorch
Commit Name: 157041a86ecda19d43967fc3028d7b48fe17b243
Time: 2019-11-10
Author: gpleiss@gmail.com
File Name: gpytorch/variational/variational_strategy.py
Class Name: VariationalStrategy
Method Name: prior_distribution


Project Name: cornellius-gp/gpytorch
Commit Name: 76c081b840cd71b20d8ac8692b312ebef95eae75
Time: 2019-04-11
Author: gpleiss@gmail.com
File Name: gpytorch/models/exact_prediction_strategies.py
Class Name: DefaultPredictionStrategy
Method Name: exact_predictive_covar


Project Name: cornellius-gp/gpytorch
Commit Name: 30ca6105f64f1cbbdb7f012bc848ed840e6f3682
Time: 2019-04-12
Author: gpleiss@gmail.com
File Name: gpytorch/models/exact_prediction_strategies.py
Class Name: DefaultPredictionStrategy
Method Name: exact_predictive_covar