2019b3cae62bdb7740e93b0820fb25692c955cd6,src/pytools/metrics.py,weighted_categorical_crossentropy,loss,#weighted_categorical_crossentropy#Any#Any#,69

Before Change


        // clip
        y_pred = K.clip(y_pred, K.epsilon(), 1)
        // calc        
        p = y_true*K.log(y_pred)
        loss = p*self.weights
        loss =-K.sum(loss,-1)
//         return loss
        return K.mean(loss)

// def nonzero_acc(y_true, y_pred):

After Change


        yt = y_true.eval()
        ytbg = np.where(yt == 0)
        y_true_fix = K.variable(yt.flat(ytbg))
        y_pred_fix = K.variable(y_pred.eval().flat(ytbg))
        return self.metric(y_true_fix, y_pred_fix)
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 4

Instances


Project Name: adalca/neuron
Commit Name: 2019b3cae62bdb7740e93b0820fb25692c955cd6
Time: 2017-03-16
Author: adalca@mit.edu
File Name: src/pytools/metrics.py
Class Name: weighted_categorical_crossentropy
Method Name: loss


Project Name: pytorch/fairseq
Commit Name: 1082ba352c5f1d524b1fcba43ee611280b169224
Time: 2018-09-25
Author: edunov@apache.org
File Name: fairseq/trainer.py
Class Name: Trainer
Method Name: valid_step