72339ff8f2faca4266f8cd06514908f76224a417,modAL/batch.py,,ranked_batch,#Any#Any#Any#Any#,41

Before Change


    unlabeled_uncertainty = np.concatenate((unlabeled, np.expand_dims(uncertainty_scores, axis=1)), axis=1)
    unlabeled_uncertainty_copy = np.copy(unlabeled_uncertainty)

    instance_index_ranking = deque()
    ceiling = np.minimum(unlabeled.shape[0], n_instances)

    // TODO (dataframing) there must be a better way...maybe?
    for _ in range(ceiling):

After Change


    unlabeled_uncertainty_copy = np.copy(unlabeled_uncertainty)

    // Define our record container and the maximum number of records to sample.
    instance_index_ranking = []
    ceiling = np.minimum(unlabeled.shape[0], n_instances)

    // TODO (dataframing) is there a better way to do this? Inherently sequential.
    for _ in range(ceiling):
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 4

Non-data size: 4

Instances


Project Name: modAL-python/modAL
Commit Name: 72339ff8f2faca4266f8cd06514908f76224a417
Time: 2018-08-11
Author: dannyofig@gmail.com
File Name: modAL/batch.py
Class Name:
Method Name: ranked_batch


Project Name: vitchyr/rlkit
Commit Name: 2fa5e8fb64a65c21a4fac94b0d80c091e9dcbb27
Time: 2019-04-10
Author: vitchyr@gmail.com
File Name: rlkit/samplers/data_collector/step_collector.py
Class Name: GoalConditionedStepCollector
Method Name: __init__


Project Name: kengz/SLM-Lab
Commit Name: 2051aa89ec691d1c056e3e1f1187c489597c2ead
Time: 2018-08-17
Author: kengzwl@gmail.com
File Name: slm_lab/agent/memory/replay.py
Class Name: SILSeqReplay
Method Name: __init__


Project Name: rtqichen/torchdiffeq
Commit Name: 1b93cfeca5f2503eafc4ec773353254cf077fb9f
Time: 2020-07-28
Author: 33688385+patrick-kidger@users.noreply.github.com
File Name: torchdiffeq/_impl/adams.py
Class Name:
Method Name: g_and_explicit_phi