565960370df285169f4a2b2a7368e3d9f07e6617,tasks/imdb_tcn.py,,,#,15
Before Change
y_test = np.array(y_test)
i = Input(shape=(maxlen,))
x = Embedding(max_features, 128)(i)
x = TCN(nb_filters=64,
kernel_size=6,
dilations=[1, 2, 4, 8, 16, 32, 64])(x)
x = Dropout(0.5)(x)
After Change
model = Sequential([
Embedding(max_features, 128, input_shape=(maxlen,)),
TCN(kernel_size=6, dilations=[1, 2, 4, 8, 16]),
Dense(1, activation="sigmoid")
])
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 2
Instances
Project Name: philipperemy/keras-tcn
Commit Name: 565960370df285169f4a2b2a7368e3d9f07e6617
Time: 2021-03-09
Author: premy.enseirb@gmail.com
File Name: tasks/imdb_tcn.py
Class Name:
Method Name:
Project Name: alexandrebarachant/pyRiemann
Commit Name: 4adafe833aa3ac54eb01f81dad822db2592d8537
Time: 2017-06-13
Author: pedro.rodrigues01@gmail.com
File Name: examples/ERP/plot_embedding_EEG.py
Class Name:
Method Name:
Project Name: philipperemy/keras-tcn
Commit Name: 0cfe82c6beb9a28a5ff7da81b86fa0e93c388f14
Time: 2019-11-20
Author: premy@cogent.co.jp
File Name: tasks/save_reload_model.py
Class Name:
Method Name: