565960370df285169f4a2b2a7368e3d9f07e6617,tasks/imdb_tcn.py,,,#,15

Before Change


y_test = np.array(y_test)

i = Input(shape=(maxlen,))
x = Embedding(max_features, 128)(i)
x = TCN(nb_filters=64,
        kernel_size=6,
        dilations=[1, 2, 4, 8, 16, 32, 64])(x)
x = Dropout(0.5)(x)

After Change



model = Sequential([
    Embedding(max_features, 128, input_shape=(maxlen,)),
    TCN(kernel_size=6, dilations=[1, 2, 4, 8, 16]),
    Dense(1, activation="sigmoid")
])
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 2

Instances


Project Name: philipperemy/keras-tcn
Commit Name: 565960370df285169f4a2b2a7368e3d9f07e6617
Time: 2021-03-09
Author: premy.enseirb@gmail.com
File Name: tasks/imdb_tcn.py
Class Name:
Method Name:


Project Name: alexandrebarachant/pyRiemann
Commit Name: 4adafe833aa3ac54eb01f81dad822db2592d8537
Time: 2017-06-13
Author: pedro.rodrigues01@gmail.com
File Name: examples/ERP/plot_embedding_EEG.py
Class Name:
Method Name:


Project Name: philipperemy/keras-tcn
Commit Name: 0cfe82c6beb9a28a5ff7da81b86fa0e93c388f14
Time: 2019-11-20
Author: premy@cogent.co.jp
File Name: tasks/save_reload_model.py
Class Name:
Method Name: