9b95e0f07b60b6a144893dcc506dfaf90db61c95,librosa/feature/utils.py,,stack_memory,#Any#Any#Any#,119
Before Change
data = np.pad(data, [(0, 0), padding], **kwargs)
history = np.vstack([np.roll(data, -i * delay, axis=1) for i in range(n_steps)[::-1]])
// Trim to original width
if delay > 0:
history = history[:, :t]
else:
history = history[:, -t:]
// Make contiguous
return np.asfortranarray(history)
After Change
shape = list(data.shape)
shape[0] = shape[0] * n_steps
shape[1] = t
shape = tuple(shape)
// Construct the output array to match layout and dtype of input
history = np.empty_like(data, shape=shape)
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 4
Instances Project Name: librosa/librosa
Commit Name: 9b95e0f07b60b6a144893dcc506dfaf90db61c95
Time: 2020-05-18
Author: bmcfee@users.noreply.github.com
File Name: librosa/feature/utils.py
Class Name:
Method Name: stack_memory
Project Name: ANSSI-FR/SecuML
Commit Name: 39efccc696a1c20745a52cc50935cdc24f92230d
Time: 2019-05-09
Author: anael.beaugnon@ssi.gouv.fr
File Name: secuml/exp/data/features.py
Class Name: FeaturesFromExp
Method Name: get_matrix
Project Name: ANSSI-FR/SecuML
Commit Name: 39efccc696a1c20745a52cc50935cdc24f92230d
Time: 2019-05-09
Author: anael.beaugnon@ssi.gouv.fr
File Name: secuml/core/classif/classifiers/__init__.py
Class Name: Classifier
Method Name: _predict_streaming