////////////////////////////////////////////
tf.app.flags.DEFINE_float("learning_rate", default=0.001, help="initial learning rate")
tf.app.flags.DEFINE_integer("seed", default=111, help="seed")
////////////////////////////////////
// Training Flags //
////////////////////////////////////
tf.app.flags.DEFINE_integer("batch_size", default=128, help="Batch size for training")
tf.app.flags.DEFINE_integer("num_epoch", default=10, help="Number of training iterations")
tf.app.flags.DEFINE_integer("batch_per_log", default=10, help="Print the log at what number of batches?")
//////////////////////////////
// Model Flags //
//////////////////////////////
tf.app.flags.DEFINE_integer("hidden_size", default=128, help="Number of neurons for RNN hodden layer")
// Store all elemnts in FLAG structure!
args = tf.app.flags.FLAGS
// Reset the graph set the random numbers to be the same using "seed"
tf.reset_default_graph()