0db408d1eea2ce5c1d9b20fe61cb519e059d6cef,examples/basic_tagger.py,,main,#Any#Any#,23

Before Change



    train_X, train_y = zip(*train_data)
    dev_X, dev_y = zip(*check_data)
    dev_y = model.ops.flatten(dev_y)
    with model.begin_training(train_X, train_y) as (trainer, optimizer):
        trainer.batch_size = 8
        trainer.nb_epoch = 10
        trainer.dropout = 0.2

After Change


            lambda: print(model.evaluate(dev_X, dev_y)))
        for X, y in trainer.iterate(train_X, train_y):
            yh, backprop = model.begin_update(X, drop=trainer.dropout)
            backprop([yh[i]-y[i] for i in range(len(yh))], optimizer)
    with model.use_params(optimizer.averages):
        print(model.evaluate(dev_X, dev_y))
 
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 5

Instances


Project Name: explosion/thinc
Commit Name: 0db408d1eea2ce5c1d9b20fe61cb519e059d6cef
Time: 2017-09-15
Author: honnibal+gh@gmail.com
File Name: examples/basic_tagger.py
Class Name:
Method Name: main


Project Name: explosion/thinc
Commit Name: 61dce6375e39c20f571049161da2a341f2592393
Time: 2017-01-28
Author: honnibal@gmail.com
File Name: thinc/tests/integration/test_basic_tagger.py
Class Name:
Method Name: test_small_end_to_end


Project Name: Qiskit/qiskit-aqua
Commit Name: aefba06234c63a950bac21c9d4f07e97ebed7d5f
Time: 2020-05-14
Author: 41292468+stefan-woerner@users.noreply.github.com
File Name: qiskit/optimization/algorithms/recursive_minimum_eigen_optimizer.py
Class Name: RecursiveMinimumEigenOptimizer
Method Name: _find_strongest_correlation