else:
names = [name]
data_arrays = [as_tensor(data, name)for data, name in zip(data_arrays,names)]
self.data = data_arrays
self.missing_values = [d.missing_values for d in data_arrays if hasattr(d, "missing_values")]
self.logp_elemwiset = distribution.logp(*data_arrays)
self.model = model
self.distribution = distribution
After Change
self.model = model
self.distribution = distribution
theano.gof.Apply(identity, inputs=[data], outputs=[self])
class MultiObservedRV(Factor):
Observed random variable that a model is specified in terms of.