f68733f5a94aff716051e16a5bea00b1f4059963,policy.py,PolicyNetwork,set_up_network,#PolicyNetwork#,45
Before Change
_current_h_conv = h_conv_init
for i in range(self.num_int_conv_layers):
W_conv_intermediate.append(_weight_variable([3, 3, self.k, self.k], name="W_conv_inter" + str(i)))
h_conv_intermediate.append(tf.nn.relu(_conv2d(_current_h_conv, W_conv_intermediate[-1]), name="h_conv_inter" + str(i)))
_current_h_conv = h_conv_intermediate[-1]
W_conv_final = _weight_variable([1, 1, self.k, 1], name="W_conv_final")
After Change
h_conv_intermediate = []
_current_h_conv = h_conv_init
for i in range(self.num_int_conv_layers):
with tf.name_scope("layer"+str(i)):
W_conv_intermediate.append(_weight_variable([3, 3, self.k, self.k], name="W_conv"))
h_conv_intermediate.append(tf.nn.relu(_conv2d(_current_h_conv, W_conv_intermediate[-1]), name="h_conv"))
_current_h_conv = h_conv_intermediate[-1]
W_conv_final = _weight_variable([1, 1, self.k, 1], name="W_conv_final")
b_conv_final = tf.Variable(tf.constant(0, shape=[go.N ** 2], dtype=tf.float32), name="b_conv_final")
h_conv_final = _conv2d(h_conv_intermediate[-1], W_conv_final)
output = tf.nn.softmax(tf.reshape(h_conv_final, [-1, go.N ** 2]) + b_conv_final)
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 4
Instances
Project Name: brilee/MuGo
Commit Name: f68733f5a94aff716051e16a5bea00b1f4059963
Time: 2016-09-19
Author: brian.kihoon.lee@gmail.com
File Name: policy.py
Class Name: PolicyNetwork
Method Name: set_up_network
Project Name: keras-team/keras
Commit Name: 3b440235e237ef59ec5763c413e7f4292dab5d79
Time: 2018-04-26
Author: francois.chollet@gmail.com
File Name: keras/engine/network.py
Class Name: Network
Method Name: run_internal_graph
Project Name: brilee/MuGo
Commit Name: ddb4bc80d140422bcccc6670448a76e48f139844
Time: 2016-10-12
Author: brian.kihoon.lee@gmail.com
File Name: policy.py
Class Name: PolicyNetwork
Method Name: set_up_network