filters = channels
elif isinstance(filters, int):
if filters != channels and "layout" in kwargs:
filters = [filters] * filters_needed(kwargs["layout"])
if isinstance(filters, (list, tuple)) and len(filters) > 0:
if isinstance(filters, tuple):
After Change
with tf.variable_scope("final"):
x = cls.crop(x, targets, kwargs["data_format"])
args = cls.combine_kwargs(kwargs, dict(layout="c", kernel_size=1, filters=channels))
x = conv_block(x, **args)
return x
@classmethod