4858a3da74bc14eeaf724c9896bfe77df9451548,PyMC2/tests/test_norm_approx.py,test_norm_approx,check_draws,#test_norm_approx#,34
Before Change
N = NormalApproximation(model)
N.fit("fmin")
draws = []
for i in range(1000):
N.draw()
draws.append(hstack((N.alpha.value, N.beta.value)))
draws = array(draws)
plot(draws[:,0],draws[:,1],"k.")
xlabel(r"$\alpha$")
ylabel(r"$\beta$")
After Change
N.fit("fmin")
N.sample(1000)
plot(N.alpha.trace(),N.beta.trace(),"k.")
xlabel(r"$\alpha$")
ylabel(r"$\beta$")
if __name__=="__main__":
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 4
Instances
Project Name: pymc-devs/pymc3
Commit Name: 4858a3da74bc14eeaf724c9896bfe77df9451548
Time: 2007-09-13
Author: anand.prabhakar.patil@15d7aa0b-6f1a-0410-991a-d59f85d14984
File Name: PyMC2/tests/test_norm_approx.py
Class Name: test_norm_approx
Method Name: check_draws
Project Name: rodluger/starry
Commit Name: 2be6b0d67e07b4c8bb1b87f90d1bda023faa41bf
Time: 2018-02-08
Author: rodluger@gmail.com
File Name: test.py
Class Name:
Method Name:
Project Name: kymatio/kymatio
Commit Name: 4f1e7f2f936bf5f3e6d1da8d8be843dc3273fe67
Time: 2018-11-21
Author: janden@flatironinstitute.org
File Name: examples/1d/plot_filters.py
Class Name:
Method Name: