a456f784eda6257b73b25fc6c4ee5682dc1341f2,hpsklearn/components.py,,svc_sigmoid,#Any#Any#Any#Any#Any#Any#Any#Any#Any#,253
Before Change
np.log(1.0),
np.log(4.0)) if C is None else C,
gamma=hp.lognormal(
_name("gamma") ,
np.log(1.0),
np.log(3.0)) if gamma is None else gamma,
coef0=hp.normal(
After Change
return "%s.%s_%s" % (name, "sigmoid", msg)
// -- tanh(K(x, y) + coef0)
sigm_coef0 = hp.choice("coef0nz", [
0.0,
hp.normal( _name("coef0"), 0.0, 1.0)])
rval = scope.sklearn_SVC(
kernel="sigmoid",
C=_svc_C(name) if C is None else C,
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 4
Instances Project Name: hyperopt/hyperopt-sklearn
Commit Name: a456f784eda6257b73b25fc6c4ee5682dc1341f2
Time: 2014-02-06
Author: james.bergstra@gmail.com
File Name: hpsklearn/components.py
Class Name:
Method Name: svc_sigmoid
Project Name: hyperopt/hyperopt-sklearn
Commit Name: a456f784eda6257b73b25fc6c4ee5682dc1341f2
Time: 2014-02-06
Author: james.bergstra@gmail.com
File Name: hpsklearn/components.py
Class Name:
Method Name: svc_poly
Project Name: hyperopt/hyperopt-sklearn
Commit Name: c7eedbd86349ee56a1d816a4e54dc031382da305
Time: 2016-07-22
Author: chandlerx.watson@intel.com
File Name: hpsklearn/components.py
Class Name:
Method Name: linear_discriminant_analysis