f908671185394de7527a18bb5889dc21a167c4bd,memcnn/models/additive.py,AdditiveBlockFunction,backward,#Any#Any#,148
Before Change
// restore input
xout = torch.cat([x1, x2], dim=1).contiguous()
x.storage().resize_(int(np.prod(xout.shape)))
x.set_(xout)
return (grad_input, None, None) + FWgrads + GWgrads
After Change
// restore input
xout = torch.cat([x1, x2], dim=1).contiguous()
with torch.no_grad():
x.storage().resize_(int(np.prod(xout.shape)))
x.set_(xout)
return (grad_input, None, None) + FWgrads + GWgrads
class AdditiveBlockInverseFunction(torch.autograd.Function):
In pattern: SUPERPATTERN
Frequency: 6
Non-data size: 4
Instances
Project Name: silvandeleemput/memcnn
Commit Name: f908671185394de7527a18bb5889dc21a167c4bd
Time: 2019-05-24
Author: silvandeleemput@gmail.com
File Name: memcnn/models/additive.py
Class Name: AdditiveBlockFunction
Method Name: backward
Project Name: silvandeleemput/memcnn
Commit Name: f908671185394de7527a18bb5889dc21a167c4bd
Time: 2019-05-24
Author: silvandeleemput@gmail.com
File Name: memcnn/models/additive.py
Class Name: AdditiveBlockFunction2
Method Name: backward
Project Name: silvandeleemput/memcnn
Commit Name: 85e122c91e6f85e9a73e769034465d8e8919076e
Time: 2019-05-28
Author: silvandeleemput@gmail.com
File Name: memcnn/models/affine.py
Class Name: AffineBlockInverseFunction
Method Name: backward
Project Name: silvandeleemput/memcnn
Commit Name: 85e122c91e6f85e9a73e769034465d8e8919076e
Time: 2019-05-28
Author: silvandeleemput@gmail.com
File Name: memcnn/models/affine.py
Class Name: AffineBlockInverseFunction2
Method Name: backward
Project Name: silvandeleemput/memcnn
Commit Name: f908671185394de7527a18bb5889dc21a167c4bd
Time: 2019-05-24
Author: silvandeleemput@gmail.com
File Name: memcnn/models/additive.py
Class Name: AdditiveBlockInverseFunction2
Method Name: backward
Project Name: silvandeleemput/memcnn
Commit Name: f908671185394de7527a18bb5889dc21a167c4bd
Time: 2019-05-24
Author: silvandeleemput@gmail.com
File Name: memcnn/models/additive.py
Class Name: AdditiveBlockInverseFunction
Method Name: backward