The prediction of the model.
if x.ndim == 1:
x = np.expand_dims(x, axis=0)
elif x.ndim > 2:
raise ValueError("Training set dimension not suitable for the "
"regressor.")
After Change
assert x[0].ndim == 2 and x[1].ndim == 2
assert x[0].shape[0] == x[1].shape[0]
x = np.concatenate((x[0], x[1]), axis=1)
if isinstance(x, list):
if self.features:
x[0] = self.features.transform(x[0])