2ab8c1444facbd46df8767a5badda5b9f1a50c29,tpot/tpot.py,TPOT,predict,#TPOT#Any#,314

Before Change


            most_common(1)[0][0]
        training_testing_data.loc[:, "guess"] = most_frequent_training_class

        new_col_names = {}
        for column in training_testing_data.columns.values:
            if type(column) != str:
                new_col_names[column] = str(column).zfill(10)
        training_testing_data.rename(columns=new_col_names, inplace=True)

After Change


                              "Please call fit() first."))

        training_data = np.insert(self._training_features, 0, self._training_classes, axis=1)  // Insert the classes
        training_data = np.insert(training_data, 0, np.zeros((training_data.shape[0],)), axis=1)  // Insert the group
        testing_data = np.insert(testing_features, 0, np.zeros((testing_features.shape[0],)), axis=1)  // Insert the classes
        testing_data = np.insert(testing_data, 0, np.ones((testing_data.shape[0],)), axis=1)  // Insert the group

        most_frequent_class = Counter(self._training_classes).most_common(1)[0][0]
        data = np.concatenate([training_data, testing_data])
        data = np.insert(data, 0, np.array([most_frequent_class] * data.shape[0]), axis=1)

        // Transform the tree expression in a callable function
        func = self._toolbox.compile(expr=self._optimized_pipeline)
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 4

Instances


Project Name: EpistasisLab/tpot
Commit Name: 2ab8c1444facbd46df8767a5badda5b9f1a50c29
Time: 2016-08-01
Author: supacoofoo@gmail.com
File Name: tpot/tpot.py
Class Name: TPOT
Method Name: predict


Project Name: theislab/scanpy
Commit Name: 7f2517a4d8fa2ef29e559be70ca2c02d99f48290
Time: 2017-08-21
Author: f.alex.wolf@gmx.de
File Name: docs/conf.py
Class Name:
Method Name:


Project Name: zhanghang1989/PyTorch-Encoding
Commit Name: c4d27a8f85f59fb63ebc3893f543e6ca1814a81e
Time: 2020-04-09
Author: zhang.hang@rutgers.edu
File Name: docs/source/conf.py
Class Name:
Method Name: