InputType.check(input_type)
with tf.Graph().as_default():
tf.set_random_seed(69)
// Get images and labels from the dataset
with tf.device("/cpu:0"):
images, labels = dataset.inputs(
input_type=input_type,
After Change
// Build a Graph that computes the predictions from the inference model.
_, predictions = self._model.get(
images, dataset.num_classes, train_phase=False, l2_penalty=0.0)
loss = self.metric["fn"](predictions, labels)
saver = tf.train.Saver(variables_to_restore())
average_error = float("inf")