def main(unused_argv):
// Load training and test data.
train_data, train_labels, test_data, test_labels = load_mnist()
// Get model, optimizer and specify loss.
model = cnn_model()
optimizer = GradientDescentOptimizer(learning_rate=FLAGS.learning_rate)
After Change
])
att_types, att_slices, att_metrics, att_values = get_flattened_attack_metrics(
attack_results)
print("\n".join([" %s: %.4f" % (", ".join([s, t, m]), v)for t, s, m, v in
zip(att_types, att_slices, att_metrics, att_values)]))