// use non-linear CLF on 1d data
nl_clf.train(train.selectFeatures([0]))
p_uv = nl_clf.predict(test.selectFeatures([0]).samples)
uv_perf.append(N.mean(p_uv==test.labels))
mean_mv_perf = N.mean(mv_perf)
After Change
mv_lin_perf.append(N.mean(p_lin_mv==test.labels))
// use non-linear CLF on 1d data
nl_clf.train(train[:, 0])
p_uv = nl_clf.predict(test[:, 0].samples)
uv_perf.append(N.mean(p_uv==test.labels))